Pythagorean Theorem12 The

Prove the following Theorems and Corollaries.

- **T12-1** If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.
- **C12-1** When the altitude is drawn to the hypotenuse of a right triangle, the length of the altitude is the geometric mean between the segments of the hypotenuse.
- C12-2 When the altitude is drawn to the hypotenuse of a right triangle, each leg is the geometric mean between the hypotenuse and the segment of the hypotenuse that is adjacent to that leg.
- **T12-2** *Pythagorean Theorem* In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs.

Exercise

Find the values of x, y, and z.

1.

2.

3.

4.

-5

6.

7.

8.

9.

The length of a diagonal of a square is given. Find the length of a side of the square.

10. 2

11. 10

12. 20*k*

13. $7n\sqrt{2}$

Find the value of *x* in each figure.

14.

15.

Geometry

16.

17.

18.

19.

20.

21.

The dimensions of a rectangular box are given. Find the length of a diagonal of the solid.

23.
$$\sqrt{7}, \sqrt{6}, \sqrt{5}$$

26.
$$n+2, \sqrt{2n+1}, 2$$

27-28 Find the value of *h*.

27.

28.

(*Hint*: Let PQ = x; QR = 21 - x. Use two right Δ s)

(*Hint*: Let TU = x; SU = x + 11.)

*29. O is the *center* of square ABCD (the point of intersection of the diagonals) and \overline{VO} is perpendicular to the plane of the square. Find OE, the distance from O to the plane of ΔVBC .

